Johnson, C. K. (1965). ORTEP, a Fortran Thermal-Ellipsoid Plot Program for Crystal Structure Illustrations. Report ORNL-3794. Oak Ridge National Laboratory, Oak Ridge, Tennessee.
Klyne, W. \& Prelog, D. (1960). Experientia, 16, 521.
Lai, T. F. \& Marsh, R. E. (1967). Acta Cryst. 22, 885. Ritchie, J. M. \& Ritchie, B. R. (1968). Science, 162, 1394.
Sax, M. \& Pletcher, J. (1969). Science, 166, 1546.
Sax, M., Pletcher, J. \& Gustaffson, B. (1970). Acta Cryst. B26, 114.
Sax, M., Pletcher, J., Yoo, C. S. \& Stewart, J. M. (1971). Acta Cryst. B27, 000

Shefter, E., Barlow, M., Sparks, R. A. \& Trueblood, K. N. (1969). Acta Cryst. B25, 895.

Shiono, R. (1965). A Modification of the ORFLS Program. Crystallography Laboratory, Univ. of Pittsburgh.
Shiono, R. (1967). A Modification of the Zlakin Fourier Synthesis Program. Crystallography Laboratory, Univ. of Pittsburgh.
Shiono, R. et al. (1963-8). Technical Reports TR-63-2, 3, 4 \& TR-68-1, 2. Department of Crystallography, Univ. of Pittsburgh.
Stewart, R. F., Davidson, R. E. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

The Crystal Strucure of Bisthiourea Pyridinium Bromide

By Mary R.Truter and B.L.Vickery
Agricultural Research Council, Unit of Structural Chemistry, University College London, Inveresk

House, 346 Strand, London WC2R 0HG, England
(Received 26 May 1971)
The adduct of pyridinium bromide with two molecules of thiourea gives orthorhombic crystals, $a=$ 14.756 (2), $b=10 \cdot 893$ (1), $c=8 \cdot 363$ (1) \AA and space group $C m c m$. There are four formula units per cell. Full-matrix least-squares refinement on 893 observations gave an R value of 0.043 . Anisotropic vibration was allowed for atoms other than hydrogen. For the hydrogen atoms of thiourea isotropic vibration parameters were refined; it was not possible to locate those on the pyridinium ion. The thiourea molecules lie on the mirror planes at $z=\frac{1}{4}$ and $\frac{3}{4}$ with the $\mathrm{N} \cdots \mathrm{N}$ vector along c in which direction $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ hydrogen bonds hold the molecules in columns. The pyridinium ions occupy spaces formed by eight sulphur atoms; each sulphur atom has four cation neighbours. Disorder of the pyridinium ions yields the $2 / m$ symmetry required by the space group but parameter interaction precludes mathematical distinction between two types of disorder, $\frac{1}{6}$ nitrogen, $\frac{5}{6}$ carbon in each site or $\frac{1}{2}$ nitrogen, $\frac{1}{2}$ carbon in only two sites; however, the latter arrangement gives more chemically reasonable bond lengths. These two sites are at 3.642 (9) \AA from the bromide ions. Each bromide ion has two such contacts, subtending an angle of 58.4°; on its other side are 4 hydrogen atoms each at $2.50 \AA$; they are bonded to nitrogen atoms of 4 thiourea molecules and the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Br}$ distance is $3.467 \AA$.

Introduction

Thiourea forms complexes with halides of nearly all metals from large univalent ones, e.g. caesium, to small transition metals, e.g. nickel. It also forms complexes with salts of the pyridinium and N-methylpyridinium ions, (Phillips, 1967), of stoichiometry $\mathrm{pyrH}^{+} \mathrm{X}^{-}$,bisthiourea where X may be a halide, nitrate, or sulphate. Our original interest in these compounds was to study the interaction of thiourea with a non-spherical cation. Of the isomorphous series with $\mathrm{X}=\mathrm{Cl}, \mathrm{Br}$ or I we chose the bromide for a full structure analysis.

Experimental

Crystal data

Pyridinium bromide-bisthiourea, $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{BrN}_{5} \mathrm{~S}_{2}, M=$ $311 \cdot 26$; orthorhombic, $a=14.756$ (2), $b=10.893$ (1), $c=8.363$ (1) $\AA, U=1341 \AA^{3}, D_{m}=1.57 \mathrm{~g} . \mathrm{cm}^{-3}, Z=4$, $D_{c}=1.536 \mathrm{~g} . \mathrm{cm}^{-3}$. Systematic absences, $h k l$ with $h+k$
odd, $h 0 l$ with l odd. $F(000)=628$. Zr-filtered Mo $K \alpha$ radiation. $\quad \lambda\left(\right.$ Mo $\left.K \alpha_{1}\right)=0.7093 \quad \AA, \quad \mu($ Mo $K \alpha)=35.3$ cm^{-1}. Absorption correction applied. Space group Cmcm , established by structure analysis.
A crystal $0.5 \times 0.3 \times 0.3 \mathrm{~mm}$ was mounted in Araldite on a rigid support* on the Picker diffractometer. Optimization of 23 reflexions centred on Mo $K \alpha_{1}$ radiation gave the orientation matrix and cell dimensions. $\mathrm{Ob}-$ servations were collected for $h k l$ and $h k l$ to allow for possible significant differences caused by anomalous dispersion if the space group were non-centric. Shells of reciprocal space were measured from $2 \theta=3^{\circ}$ to $2 \theta=60^{\circ}$, when the crystal suddenly started to decompose rapidly. The $\theta-2 \theta$ scan mode was used from 0.7° below 2θ for Mo $K \alpha_{1}$ to 0.8° above 2θ for Mo $K \alpha_{2}$ at $\frac{1}{2}^{\circ} \cdot \mathrm{min}^{-1}$. Backgrounds were measured for 20 sec at each end of the scan. Three reference reflexions 004,

[^0]710 and $12,8,1$ were measured after every 50 observations. Their variation is shown in Fig. 1; it corresponds to an initial fall followed by a rise, i.e. the rapid fall after 2100 reflexions had been measured is not shown. The occasional large fluctuation led us to choose an analytical method of compensation for scale variation of the measured reflexions. Altogether 2055 reflexions were measured, Lorentz and polarization factors were applied and the standard deviations in the observations calculated from the expression $\sigma^{2}(I)=$ $\left[c+0 \cdot 25\left(t_{c} / t_{b}\right)^{2}\left(B_{1}+B_{2}\right)\right]$ where c is the total integrated count obtained in time t_{c}, B_{1} and B_{2} are background counts each obtained in time t_{b}.

To minimize computing time only 1114 observations of the type $h k l$ were used to solve the structure. Systematic absences were consistent with three space groups, $\mathrm{Cmcm}, \mathrm{Cmc}$, and $A m a$ (or $C 2 \mathrm{~cm}$ in the same system of axes). A Patterson synthesis revealed $\mathrm{Br}-\mathrm{Br}$ vectors corresponding to a Br ion at $0, y, 0.25$ with $y=0.08854$; location of one atom does not resolve the uncertainty in the space groups. One cycle of isotropic refinement gave an R value of 0.52 , a Fourier synthesis revealed the non-hydrogen atoms. The thiourea molecule was lying with the S and C atoms at $z=0.25$ and the two nitrogen atoms related by the mirror plane at $z=0 \cdot 25$. The pyridinium ion, however, was not lying in the only position of $m m$ symmetry, i.e. with N and the γ-carbon atoms, at $0, y, \frac{1}{4}$ but was arranged about the point of $2 / m$ symmetry, $0, \frac{1}{2}, 0$. This was consistent with a disordered pyridine in Cmcm , or as we thought more probable, a non-centrosymmetric space group. Full-matrix refinement (Vickery, 1970) in Cmcm with all the pyridinium atoms taken as carbon, gave an R value of $0 \cdot 19$, with all shifts less than 0.2 of the corresponding standard deviations. A difference synthesis indicated anisotropic motion for the bromine, sulphur, and nitrogen atoms.

For full-matrix least-squares anisotropic refinement the program NUCLS* was used. Scattering factors for $\mathrm{Br}^{-}, \mathrm{S}, \mathrm{C}$, and N were taken from Cromer (1965) with allowance for the real and imaginary parts of the anomalous dispersion of bromine. The scale was refined by the quadratic equation of Ibers (1969). All 2055 observations were included, the weighting scheme was adjusted to give approximately constant average values of $W \Delta F^{2}$ in various ranges of $\left|F_{o}\right|$ and $\sin \theta / \lambda$. The expression was $1 / V W=\sigma_{\text {counting }}+0.005\left|F_{o}\right|+0 \cdot 0002\left|F_{o}\right|^{2}$ where $\left|F_{o}\right|$ is on the measured scale. Parameters were the coordinates (not fixed by space group symmetry), anisotropic vibration for bromine, sulphur and nitrogen, and isotropic vibration for the carbon of thiourea and for the pyridinium ion with all atoms given the scattering factor of carbon. R was 0.063 and the anisotropic vibration parameters for the pyridinium ion reduced it to 0.055 .
An absorption correction based on the Gaussian in-

[^1]tegration program of Ahmed, Hall, Pippy \& Saunderson (1967), was now applied to the original observations. Before final refinement, consideration was given to the question of the uncertainty in the space group. This can be followed with the aid of Figs. 2 and 3 which show projections of the structure in Cmcm and the designations of the atoms. The peaks in the Patterson synthesis were very sharp, giving no indication of the doubling required by lower symmetry space groups. An ordered structure with $C(2)$ or $C\left(2^{\text {vii }}\right)$ being a nitrogen atom is possible only in $C m c 2_{1}$. As $\Delta f^{\prime \prime}$ for bromine is $2 \cdot 6$ there should be some significant differences between the values of $\left|F_{h k l}\right|$ and $\left|F_{h k i}\right|$ after correction for absorption, but none were found, indicating that this space group was most unlikely.

To fit the observed scaling of Fig. 1 a polynomial function was fitted by least squares with the IBM subroutine POLY for the 1130 computer; the corresponding smooth curve is shown. This was used to bring all $\left|F_{h k l}\right|$ and $\left|F_{n k i}\right|$ to the same scale before average values were taken for use in further refinement. It is clear from Fig. 1 that the quadratic equation from the Ibers procedure does not fit the experimental points, tending to reduce too far the observations collected towards the end. This effect has been observed before (Bright, Milburn \& Truter, 1971) and at first attributed to the standards being atypical in being planes of low 0 and high intensity, i.e. those particularly subject to extinction. In the present work the standards were chosen from various ranges of θ with two of strong and one of medium intensity. However, the average value of $\left|F_{o}\right|$ falls during collection, which is done in shells of reciprocal space, i.e. the Ibers method reduces the apparent $\left|F_{o}\right|$ of the weaker reflexions for which $\left|F_{o}\right|$ tends to be larger than $\left|F_{\mathrm{l}}\right|$. A possible explanation for this is that false values are produced for $\left|F_{o}\right|$ by thermal diffuse scattering.

After scaling, averaging, and rejection of planes with $\left|F_{o}\right|<3 \sigma F_{\text {counting }} 893$ observations were used in final least-squares refinement with anisotropic parameters

Fig. 1. Relation between the initial value of the intensity, I_{o}, for a standard reflexion and its value I_{t} when measured after t reflexions had been measured, compared with (1) the calculated polynomial curve and (2) the least-squares refinement by Ibers's (1969) method.
for all atoms. R was reduced to 0.048 . A difference synthesis showed the hydrogens on the thiourea molecule but not those of the pyridinium ion. Inclusion of the thiourea hydrogen atoms with scattering factor of Stewart, Davidson \& Simpson (1965) and isotropic vibration parameters reduced R to 0.043 . Two planes, (002) and (440), were omitted from the final cycles which were carried out to try to distinguish between the two possible disordered configurations on the pyridinium ion; (i) $C(2)$ and $C\left(2^{\text {vii }}\right)$ should each be $\frac{1}{2}$ carbon and $\frac{1}{2}$ nitrogen, or (ii) all atoms should be $\frac{1}{6}$ nitrogen and $\frac{5}{6}$ carbon. Suitable form factors were used for each of assumptions (i) and (ii); both refinements gave $R=0.043$ and $R^{\prime}=\sum W\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} / \sum W\left|F_{o}\right|^{2}=0.049$ with the maximum shift 0.2 of the corresponding standard deviation. Final parameters are shown in Tables 1 and 2 and observed and calculated structure factors [for model (i)] in Table 3. Only for C(2) and C(3) were the parameters more than 0.2 standard deviations different for models (i) and (ii). Bond lengths and angles were calculated for the two models; these are shown in Table 4 with their standard deviations derived from the variance-covariance matrix by the program $O R F F E$. The differences are statistically significant.

Table 1. Atomic coordinates with standard deviations in parentheses

Model (i)

	x / a	y / b	z / c	$U_{\text {iso }}$
Br	$0 \cdot 0$	0.08744 (5)	0.25	
S	$0 \cdot 23081$ (8)	$0 \cdot 21760$ (12)	0.25	
C(1)	$0 \cdot 31557$ (25)	$0 \cdot 32279$ (33)	$0 \cdot 256$	
N	$0 \cdot 35056$ (21)	$0 \cdot 36496$ (27)	$0 \cdot 11419$ (28)	
C(2)	$0 \cdot 0$	$0 \cdot 38010$ (71)	0.03904 (133)	
C(3)	$0 \cdot 07825$ (36)	$0 \cdot 43964$ (54)	0.02038 (116)	
H(1)	0.402 (2)	0.435 (3)	$0 \cdot 109$ (5)	0.098 (9)
H(2)	$0 \cdot 338$ (4)	$0 \cdot 344$ (4)	$0 \cdot 025$ (6)	$0 \cdot 130$ (13)

Model (ii)

$\mathrm{C}(2)$	0.0	0.37943 (74)	$0.03789(137)$
$C(3)$	$0.07740(35)$	$0.43804(52)$	$0.02126(113)$

C(3) $\quad 0.07740(35) \quad 0.43804(52) \quad 0.02126(113)$

To choose between them the vibration parameters were examined; as shown in Table 2, the changes are small and in the directions to be expected, i.e. an increase as the ratio of N/C in the form factor curve increases. It appears that there are two minima in the leastsquares function and this seemed possibly to be an example of parameter interaction (Geller, 1961) making the structure indeterminate. The correlation coef-

Fig. 2. The structure projected down the b axis. Pyridinium ions are centred on $x=0$ and $y=\frac{1}{2}$, or on $x=\frac{1}{2}$ and $y=1$. Hydrogen bonding with $\mathrm{S} \cdots \mathrm{HN}$ distances of $3 \cdot 40 \AA$ along the screw axes at $\frac{1}{4}, \frac{1}{4}, z$ are indicated by broken lines. Broken lines from Briv show its four hydrogen neighbours and its two pyridinium ion neighbours.

Roman numeral superscripts refer to atoms related to those at x, y, z by the following:

i	$x, \quad y$,	$\frac{1}{2}-z$
ii	$\frac{1}{2}-x, \frac{1}{2}-y, \frac{1}{2}+z$	
iii	$\frac{1}{2}+x, \frac{1}{2}+y, \frac{1}{2}-z$	
iv	$\frac{1}{2}+x$,	$\frac{1}{2}+y$,
v	$1-x$,	y,
vi	$\frac{1}{2}-z$	
vi	$1-x, \quad y, \quad z$	

$$
\begin{aligned}
& \text { vii } \quad x, 1-y, \quad-z \\
& \text { viii } x, 1-y, \frac{1}{2}+z \\
& \text { ix }-x, \quad y, \quad z
\end{aligned}
$$

Table 2. Anisotropic vibration parameters (in \AA^{2}) with their standard deviations in parentheses

Model (i)						
	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Br	$0 \cdot 0318$ (3)	0.0347 (3)	0.0526 (4)	0	0	0
S	0.0649 (8)	0.0790 (8)	0.0306 (5)	-0.0412 (6)	0	0
C(1)	0.0422 (19)	0.0441 (19)	0.0330 (17)	-0.0094 (15)	0	0
N	0.0681 (23)	0.0692 (16)	0.0359 (12)	-0.0303 (13)	$0 \cdot 0010$ (11)	0.0011 (11)
$\mathrm{C}(2)\left[\frac{1}{2} \mathrm{~N}\right]$	$0 \cdot 2245$ (97)	0.0896 (43)	0.1598 (75)	0	0	-0.0154 (47)
C(3)	$0 \cdot 1080$ (46)	$0 \cdot 1387$ (54)	$0 \cdot 2293$ (82)	$0 \cdot 0403$ (4)0	-0.0501 (59)	-0.0824 (66)
Model (ii)						
$\mathrm{C}(2)\left[\frac{1}{6} \mathrm{~N}\right]$	$0 \cdot 1909$ (108)	0.0855 (50)	$0 \cdot 1529$ (84)	0	0	-0.0144 (54)
C(3) $\left[\frac{1}{6} \mathrm{~N}\right]$	$0 \cdot 1150$ (46)	0.1476 (53)	0.2359 (83)	0.0469 (39)	-0.0552 (61)	-0.0882 (68)

ficients for the parameters of $\mathrm{C}(2)$ and $\mathrm{C}(3)$ are displayed in Table 4. These are lower than those, 0.61 , 0.62 and $0.55 \AA$, between the overall scale and the vibration parameters of bromine, but much larger than the rest of the coefficients, most of which are below $0 \cdot 05$. Changes in the form factors of one atom give changes in its vibration parameters and in the coordinates of the other atom.
The apparent vibration parameters are large, as would be expected for a superposition of two (or six) orientations. An attempt was made to carry out a molecular vibration analysis using Cruickshank's (1956) equations for a rigid body. Reference axes were chosen with 3 as the normal to the plane, and 1 along the $\mathrm{C}(2) \cdots \mathrm{C}\left(2^{\text {vii }}\right)$ direction. For T_{11}, T_{22}, and ω_{33}, values

Table 3. Observed and calculated structure amplitudes ($\times 10$)
Column headings are $l\left|F_{o}\right|\left|F_{c}\right|$. Planes omitted from the final cycles were (002) with $\left|F_{o}\right|=62,\left|F_{c}\right|=73$ and (440) with $\left|F_{o}\right|=$ 10 and $\left|F_{\epsilon}\right|=6$.

of $0.098,0.071 \AA^{2}$, and 0.068 radians 2 were obtained; the matrix for the terms T_{33}, ω_{11}, and ω_{22} had a determinant almost zero (0.047) so no reliable values for these could be obtained. A similar effect was reported for the ordered pyridinium ion in pyridinium hydrogen nitrate (Cerewitz, Robertson \& Meyers, 1965). Allowance for rotation about the plane normal gives a 'correction' for libration of $+0.045 \AA$ on the bond lengths to give the results in Table 5. We regard this 'correction' as an indication of the possible magnitude of error due to libration.

For the thiourea molecule with axes chosen as 1 along $\mathrm{C}-\mathrm{S}$ and 3 normal to the plane, a molecular vibration analysis gave $T_{11}=0.034, \quad T_{22}=0.031$, $T_{33}=0.040 \AA^{2}, \omega_{22}=0.050$ and $\omega_{33}=0.002$ radians 2, With an estimated deviation of 0.005 (\AA^{2} or radians ${ }^{2}$) the values of $T_{13}=-0.000, \omega_{11}=-0.008$, and $\omega_{13}=$ -0.001 are not significantly different from zero. Application of librational corrections gave the values shown in Table 5.

Computations were carried out on (a) an IBM 1130 computer, (b) the CDC 6600 in the University of London Computing Centre. Setting angles for, and processing observations from the Picker diffractometer were carried out on (a). This computer was also used

Fig.3. The structure projected down the c axis with the consequence that mirror-related atoms eclipse one another, i.e. $\mathrm{C}\left(2^{\mathrm{iii}}\right)$ is over $\mathrm{C}\left(2^{\mathrm{iv}}\right), \mathrm{C}\left(2^{\mathrm{i}}\right)$ is over $\mathrm{C}(2)$, etc.
for calculating intermolecular distances, mean planes through groups of atoms, the polynomial curve of Fig. 1, isotropic full-matrix least-squares, three-dimensional Fourier syntheses, and absorption correction. NUCLS 4 and ORFFE (the Busing-Levy programs with local modifications) were run on (b).

Table 4. Correlation coefficients in the least-squares matrix
Key

$\leq 0 \cdot 1$	blank
$0 \cdot 1-0 \cdot 2$	A
$0 \cdot 2-0 \cdot 3$	B
$0 \cdot 3-0 \cdot 4$	C

(a) Between parameters of $\mathrm{C}(2)$ and those of $\mathrm{C}(3)$
$\begin{array}{ccccccccccc} & \mathrm{C}(3) & x & y & z & U_{11} & U_{22} & U_{33} & U_{12} & U_{13} & U_{23} \\ \mathrm{C}(2) & y & B & B & & B & B & & A & & \\ & z & & & A & A & A & B & A & C & C \\ & U_{11} & & C & & & B & A & B & & \\ & U_{22} & & B & & & C & & B & & A \\ & U_{33} & & B & & & & B & A & & \\ & U_{23} & & & B & & & & & B & \end{array}$
(b) Between the coordinates of $\mathrm{C}(3)$ and its vibration parameters

	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
x	A			C	A	
y		A	A	B		
z						

Table 5. Results for the thiourea molecule and pyridinium ion

	Uncorrected	Corrected for libration
S-C	$1.696(4) \AA$	$1.709 \AA$
$\mathrm{C}-\mathrm{N}$	$1.330(3)$	1.335
$\mathrm{~N}-\mathrm{H}(1)$	$1.08(3)$	
$\mathrm{N}-\mathrm{H}(2)$	$0.80(5)$	
$\mathrm{S}-\mathrm{C}-\mathrm{N}$	$121.3(2)^{\circ}$	121.6°
$\mathrm{N}-\mathrm{C}-\mathrm{N}$	$117.4(3)$	116.8
$\mathrm{H}(1)-\mathrm{N}-\mathrm{H}(2)$	$109(4)$	

Equation of the plane through the molecule $-0.6727 x+$ $0.7400 y=-0.5352$

Deviation of the atoms (\AA)

S	-0.0014
C	0.0049
N	-0.0017
$\mathrm{H}(1)$	0.0449
$\mathrm{H}(2)$	-0.0376

Description of the structure and discussion

Thiourea molecules lie in mirror planes at $z=\frac{1}{4}$ and $z=\frac{3}{4}$ with the $\mathrm{N} \cdots \mathrm{N}$ axis parallel to the c axis of the crystal in which direction the molecules are held by $\mathrm{N}-\mathrm{H}(2) \cdots \mathrm{S}$ hydrogen bonds, $3 \cdot 40 \AA$, with an angle $170 \cdot 5^{\circ}$ at $\mathrm{H}(2)$. These can be seen in Fig. 2 and edge on in Fig. 3. Similar bonding holds the molecules along the b axis in uncomplexed thiourea and the dimensions in Table 5, agree with those obtained by X-ray (Truter, 1967), electron (Dvoryankin \& Vainstein, 1960), and neutron diffraction (Elcombe \& Taylor, 1968) for thiourea. In the present compound the largest rotational oscillation is about the inertial axis parallel to the $\mathrm{N} \cdots \mathrm{N}$ vector whereas in thiourea it is about the $\mathrm{S}-\mathrm{C}$ bond. The explanation for this is probably that the $\mathrm{H}(1) \cdots \mathrm{Br}$ contacts are less rigid than the $H(2) \cdots S$ contacts.

It is not possible to quote accurate values for the dimensions of the pyridinium ion. The results in Table 5 show differences greater than the standard deviation between model (i) and model (ii) and there is a further uncertainty in the application of a librational correction of $0.045 \AA$. However, comparison with other pyridinium compounds shows that model (i), i.e. end-toend disorder gives more chemically reasonable dimensions. Ordered unsubstituted pyridinium ions are found in some structures with strong N-H \cdots X bonding. The most accurate determination is that of the nitrate (Cerewitz, Robertson \& Meyers, 1965) in which all angles are close to 120° and the bond lengths not significantly different, $\mathrm{C}-\mathrm{N}=1.35$ (2) and $\mathrm{C}-\mathrm{C}=1.38$ (2) \AA (corrected for libration). In the chloride (Rérat, 1962) the angle at nitrogen is $129^{\circ}, \mathrm{C}-\mathrm{N}=1.32$ and $\mathrm{C}-\mathrm{C}=1.41 \AA$ and in the reineckate (Takeuchi \& Pepinsky, 1957) the angle at nitrogen is 134° and the lengths $\mathrm{C}-\mathrm{N} 1.35$ and C-C $1.39 \AA$. In three isomorphous disordered structures $\mathrm{pyH}^{+} \mathrm{AsF}_{6}^{-}, \mathrm{PF}_{6}^{-}$, and SbF_{6}^{-}(Copeland, Conner \& Meyers, 1965) the angle of 120° was imposed by the symmetry and the average $\mathrm{C}-\mathrm{C}$ (or $\mathrm{C}-\mathrm{N}$) distances were $1 \cdot 38,1 \cdot 38$, and $1 \cdot 40 \AA$. In the disordered tetrachloroantimonate the length was $1.37 \AA$ (Porter \& Jacobson, 1970).

For our preferred model, (i), the average after correction for libration is $1 \cdot 39 \AA$ while for model (ii) one bond length is $1 \cdot 40 \AA$ before correction and implausibly long after correction.

Each pyridinium ion is in a space formed by eight

Table 5 (cont.)
Dimensions in the pyridinium ion

	Model (i)		Model (ii)	
	Uncorrected	Corrected	Uncorrected	Corrected
$C(2)-\mathrm{C}(3)$	$1.334(7) \AA$	$1.379 \AA$	$1.316(7) \AA$	$1.361 \AA \AA$
$\mathrm{C}(3)-\mathrm{C}\left(3^{\text {vii }}\right)$	$1.358(14)$	1.403	$1.396(13)$	1.441
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}\left(3^{\text {vii }}\right)$	$120.0(5)^{\circ}$		$119.7(5)^{\circ}$	
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}\left(3^{\mathrm{ix}}\right)$	$120.0(9)$		$120.5(9)$	

Equation of the plane through the molecule $0 \cdot 236 y+0.972 z-1 \cdot 285=0$
thiourea molecules. The distances from $C\left(3^{1}\right)$ to S and to S^{ii} are 3.82 and $4.00 \AA$ respectively, and $\mathrm{C}(2)$ to S is $4.2 \AA$. In addition there are contacts to bromide ions at $3.64 \AA$ from C(2). Round the bromide ion there are contacts at $2 \cdot 50 \AA$ from $\mathrm{H}(1)$ of four thiourea molecules, and the two contacts at $3.64 \AA$ from pyridinium ions. These are indicated in Figs. 2 and 3 by the broken lines to $\mathrm{Br}^{\text {iv }}$ from $\mathrm{H}(1), \mathrm{H}\left(1^{\mathrm{i}}\right), \mathrm{H}\left(1^{\mathrm{V}}\right), \mathrm{H}\left(1^{\mathrm{vi}^{\mathrm{i}}}\right), \mathrm{C}\left(2^{\text {iii }}\right)$, and $\mathrm{C}\left(2^{\mathrm{iv}}\right)$; in Fig. 3 only the higher one, e.g. C($\left.2^{\mathrm{iii}}\right)$ is marked, because the mirror-telated atoms are eclipsed. Angles subtended at bromine are $\mathrm{C}(2) \cdots \mathrm{Br}$ $\cdots \mathrm{C}(2) 58 \cdot 3^{\circ}, \mathrm{H} \cdots \mathrm{Br} \cdots \mathrm{H} 56 \cdot 5,71 \cdot 0$, and $96 \cdot 8^{\circ}$ and the $\mathrm{H} \cdots \mathrm{Br} \cdots \mathrm{C}(2)$ angles are $110 \cdot 6$ and $143 \cdot 9^{\circ}$. Neither the length, $3.47 \AA$ nor the geometry of the $\mathrm{N}-\mathrm{H}(1) \ldots$ Br system suggests strong hydrogen bonding, the angle subtended at hydrogen is $143 \cdot 9^{\circ}$, while the angles subtended at Br do not cortespond to interaction from regularly distributed lone pairs of electrons on the anion. The hydrogen atoms on the pyridinium ions could not be located but probable positions are at $1 \AA$ from and completing a trigonal arrangement about the carbon atoms; this would give a hydrogen atom on $C(2)$ at $2 \cdot 50 \AA$ from the bromide ion and the tilt of the pyridinium ion is such that the line through $C\left(2^{i}\right)$ and $C\left(2^{\text {viii }}\right)$ makes an angle of $11 \cdot 4^{\circ}$ with that through Br and $\mathrm{Br}^{\text {viii }}$.

In their extensive study of the ionic complexes of thiourea, Boeyens \& Herbstein (1967) found a ratio of alkali metal or thallium to thiourea of $1: 4$ and showed that the structures were based on columns of thiourea molecules with cations surrounded by eight sulphur atoms and the anions (and sometimes water molecules) in the cavities formed by the NH_{2} groups, and, in some cases, hydrogen bonded to these groups.

The columns are comparable with those in the present structure and we consider, by the criteria of $\mathrm{N} \cdots \mathrm{S}^{\prime}$ distances less than $3 \cdot 5 \AA$ and $\mathrm{C}-\mathrm{N} \cdots \mathrm{S}^{\prime}$ angles of approximately 120°, that they are held by $\mathrm{N}-\mathrm{H} \cdots \mathrm{S}^{\prime}$ hydrogen bonds in the direction of the $\mathrm{N} \cdots \mathrm{N}$ vector of thiourea, which coincides in all cases with the c axis of the crystal. The evidence from published structures is presented in Table 6. Other authors do not empha-
size this point and Boeyens \& Gafner's (1968) treatment is based on electrostatic interactions only. The difference between the present structure and those of the metal complexes is best described with reference to Fig. 3; here the overlapping thiourea molecules are parallel and each sulphur (at say $z=\frac{1}{4}$) has four cation neighbours, the two visible at $z=\frac{1}{2}$ and two underneath at $z=0$. In the metal complexes the overlapping molecules make an angle of 60° with the two sulphur atoms close to one cation at $z=\frac{1}{2}$, an additional pair of thiourea molecules coordinate the other cation, with the result that there is a complete enclosure of the cation with no cation-anion contact.

We are grateful to Dr J. N. Phillips for suggesting this problem and providing the crystals, to the Director of the London University Computing Centre for facilities and to the authors for their programs. Some of the apparatus was provided by the Royal Society.

References

Ahmed, F. R., Hall, S. R., Pippy, M. E. \& Saunderson, C. P. (1967). N.R.C. Cry'stallographic Programs for the IBM 360 System.
Boeyens, J. C. A. (1968a). Acta Cryst. B24, 199.
Boeyens, J. C. A. (1968b). Acta Cryst. B 24, 1191.
Boeyens, J. C. A. \& Gafner, G. (1968). J. Chem. Phys. 49, 2435.

Boeyens, J. C. A. \& Herbstein, F. H. (1967). Inorg. Chem. 6, 1408.
Bright, D., Milburn, G. H. W. \& Truter, M. R. (1971). J. Chem. Soc. (A), p. 582.

Cerewitz, A. J., Robertson, B. K. \& Meyers, E. A. (1965). J. Phys. Chem. 69, 1915.

Copeland, R. F., Conner, S. H. \& Meyers, E. A. (1966). J. Phys. Chem. 70, 1288.

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Cruickshank, D. W. J. (1956). Acta Cryst. 9, 754.
Dvoryankin, V. F. \& Vainstein, B. K. (1960). Kristallografia, 5, 589.
Elcombe, M. M. \& Taylor, J. C. (1968). Acta Cryst. A 24, 410.

Geller, S. (1961). Acta Cryst. 14, 1026.

Table 6. Hydrogen bonding in some $\mathrm{MX}(\text { thiourea })_{4}$ compounds

MX Reference	$c(\AA)$	$\mathrm{N}-\mathrm{H} \cdots \mathrm{S}$ (\AA)	$\mathrm{C}-\mathrm{N} \cdot \mathrm{CS}\left({ }^{\circ}\right)$	Space group
$\mathrm{TlH}_{2} \mathrm{PO}_{4}$	8.27	3.41, $3 \cdot 44$	123,120	Ccm
CsF - b	$8 \cdot 51$	3.46, $3 \cdot 50$	122,123	Ibam
$\mathrm{TlC}_{6} \mathrm{H}_{5} \mathrm{COO}$	$8 \cdot 15$	$3 \cdot 49,3 \cdot 40$	119, 117	Cment
CsCl d	8.51	3.40, $3 \cdot 54$	128, 120	Bbam
		$3.42,3.47$	126, 119	
TlClO_{3}	8.201	$\begin{array}{cc} 3 \cdot 32, & 3 \cdot 32 \\ (3 \cdot 54, & 3 \cdot 62) \end{array}$	$\begin{array}{cc} 125, & 125 \\ (113, & 112) \end{array}$	B2/m
$\mathrm{TlNO}_{3}{ }_{\text {c }}$	8.2	$3 \cdot 36$	120	P4/mec
$\mathrm{C}_{5} \mathrm{NH}_{6} \mathrm{Br}$ present	8.363	$3 \cdot 395$	122.5	Cmcm
(a) Verhoef \& Boeyens (1968)				
(b) Boeyens (1968a)				
(c) Verhoef \& Boeyens (1969)				
(d) Boeyens (1968b)				
(e) Mitchell \& Boeyens (1970)				
(f) Boeyens \& Herbstein (1967)				

Ibers, J. A. (1969). Acta Cryst. B25, 1667.
Mitchell, J. \& Boeyens, J. C. A. (1970). Acta Cryst. B26, 1121.

Phillips, J. N. (1967). Private communication.
Porter, S. K. \& Jacobson, R. A. (1970). J. Chem. Soc. (A), p. 1356.

Rérat, C. (1962). Acta Cryst. 15, 427.
Stewart, R. F., Davidson, E. R. \& Simpson, W. T. (1965). J. Chem. Phys. 42, 3175.

Takeuchi, Y. \& Pepinsky, R. (1957). Z. Kristallogr. 109, 29.

Truter, M. R. (1967). Acta Cryst. 22, 556.
Verhoef, L. H. W. \& Boeyens, J. C. A. (1968). Acta Cryst. B24, 1262.
Verhoef, L. H. W. \& Boeyens, J. C. A. (1969). Acta Cryst. B25, 607.
Vickery, B. L. (1970). Full-matrix Isotropic Refinement Program for the IBM 1130 Computer.

Acta Cryst. (1972). B28, 393

The Crystal Structure of $\mathbf{K}_{2} \mathrm{PtCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}$: with Estimates of the Factors Affecting Accuracy

By R. H. B. Mais, P. G. Owston* and Allsa M. Wood
Imperial Chemical Industries Limited, Petrochemical \& Polymer Laboratory, P.O. Box 11, The Heath, Runcorn, Cheshire, England

(Received 26 August 1971)

Abstract

The structures of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ have been determined with improved accuracy. The $\mathrm{Pt}-\mathrm{Cl}$ distance is $2 \cdot 308$ (2) \AA, or $2 \cdot 316 \AA$ after correction for thermal motion; the corresponding values for $\mathrm{Pd}-\mathrm{Cl}$ are 2.313 (2) \AA and $2.318 \AA$. In both compounds the $\mathrm{K}-\mathrm{Cl}$ distances are $2.40 \AA$ and the closest $\mathrm{Cl}-\mathrm{Cl}$ distances $3.27 \AA$. After correcting for absorption and some minor causes of variation, and after allowing for statistical counting errors, there remained a variation of about 2% between the measured amplitudes of symmetry-related reflexions. This variation is approximately equal to the conventional R-value, and has no obvious explanation. Corrections for absorption and for anomalous dispersion have little effect on the calculated positions of the atoms, but have large effects on the e.s.d.'s and on the thermal parameters; they are therefore essential if corrections for thermal vibration are to be calculated.

Introduction

This work was undertaken to determine accurate interatomic distances in $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ as part of studies of the effects of substitution in square planar complexes of $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$. The structures of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and $\mathrm{K}_{2} \mathrm{PdCl}_{4}$ are known (Dickinson, 1922; Theilacker, 1937), but accurate coordinates have not previously been determined. The experimental results for $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ were used to make estimates of various sources of error, including errors due to absorption, under the conditions normally used for data-collection, in order to decide how the accuracy can best be improved.

PART I: $\mathbf{K}_{2} \mathbf{P t C l}_{\mathbf{4}}$

Experimental

Crystal data: $\mathrm{K}_{2} \mathrm{PtCl}_{4}, M=415 \cdot 3$; tetragonal, $a=b=$ 7.025 (3), $c=4.144$ (2) $\AA, V=204 \cdot 5 \AA^{3}$; space group $P 4 / \mathrm{mmm}\left(D_{4}^{1}\right.$, No. 123), $Z=1, D_{c}=3 \cdot 350, F(000)=$ 184; Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$), $\mu=220 \mathrm{~cm}^{-1}$; Zr filter; Picker automatic four-circle diffractometer.

[^2]
Unit cell

Measurements were made of the diffractometer setting angles $\chi, \varphi, \omega, 2 \theta$ for 16 reflexions. The crystal was in a random orientation and the following cell dimensions, assuming triclinic symmetry, were obtained by a least-squares analysis:
$a=7.0275$
(26)
$b=7.0218$ (24)
$c=4 \cdot 1444(13) \AA$
$\alpha=89.973$ (24)
$\beta=90.048$ (27)
$\gamma=89.996(27)^{\circ}$

The tetragonal unit-cell dimensions given in the crystal data above and used in the subsequent crystal structure analysis were derived from these values by taking the mean of a and b.

Intensity measurements

2434 observations were made of reflexions in the ranges $\sin \theta / \lambda \leq 0.904$ for $\bar{h} k l$ and $\bar{h} \bar{k} l$ and $\sin \theta / \lambda \leq 0.897$ for $h k l$ and $h \bar{k} l$. The measurements of intensity were made using a $\theta-2 \theta$ continuous scan from $0 \cdot 6^{\circ}$ below α_{1} to 0.7° above α_{2} at a rate of $0.5^{\circ} 2 \theta / \mathrm{min}$; the background was measured for 20 sec at each end of the scan range. 400 and 040 were used as standard reflexions, the intensity of each being remeasured after every 40 reflexions (i.e. every 5 hours). The moving average of these standard reflexions was used to calculate a local

[^0]: * On a support designed by R. H. B. Mais and P. G. Owston, Imperial Chemical Industries Ltd.

[^1]: * NUCLS, the North Western University variant of the Busing-Levy ORFLS.

[^2]: * Present address: Department of Inorganic, Physical \& Industrial Chemistry, The University, Liverpool, England.

